Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation.
نویسندگان
چکیده
Powerful approximate methods for propagating the density matrix of complex systems that are conveniently described in terms of electronic subsystem states and nuclear degrees of freedom have recently been developed that involve linearizing the density matrix propagator in the difference between the forward and backward paths of the nuclear degrees of freedom while keeping the interference effects between the different forward and backward paths of the electronic subsystem described in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate that different approaches to developing the linearized approximation to the density matrix propagator can yield a mean-field like approximate propagator in which the nuclear variables evolve classically subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopting an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory surface hopping methods. We show how these different short time approximations can be implemented iteratively to achieve accurate, stable long time propagation and explore their implementation in different representations. The merits of the different approximate quantum dynamics methods that are thus consistently derived from the density matrix propagator starting point and different partial linearization approximations are explored in various model system studies of multi-state scattering problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate the capabilities of these different types of approximations for treating non-adiabatic electronic relaxation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics at short times to long time thermal equilibration in the presence of a model dissipative environment.
منابع مشابه
Time-reversible Born-Oppenheimer molecular dynamics.
We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of freedom is possible despite the nonlinearity and incompleteness of the self-consistent fie...
متن کاملAdiabatic path integral molecular dynamics methods. II. Algorithms
Efficient numerical algorithms are developed for use with two finite temperature semiclassical approximations to quantum dynamics both of which require trajectories generated on potentials of mean force derived from the path integral expression for the density matrix. The numerical algorithms are formed from the combination of a classical adiabatic relation similar to that used in the Car–Parri...
متن کاملDensity-matrix-spectroscopic algorithm for excited-state adiabatic surfaces and molecular dynamics of a protonated Schiff base
Excited-state potentials of a short protonated Schiff base cation which serves as a model for the photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic surface with excitation energies obtained using the time-dependent coupled electronic oscillator ~CEO! approach. Excited-state molecular dynamic simulation of the in-plane motion of cis-C5H6NH2 1 followi...
متن کاملRheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods
This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....
متن کاملDensity-Matrix Propagation Driven by Semiclassical Correlation
Methods based on propagation of the one-body reduced density-matrix hold much promise for the simulation of correlated many-electron dynamics far from equilibrium, but difficulties with finding good approximations for the interaction term in its equation of motion have so far impeded their application. These difficulties include the violation of fundamental physical principles such as energy co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 137 22 شماره
صفحات -
تاریخ انتشار 2012